Generates all possible linear models for a given set of predictor variables using the distance matrix as a response variable. The function allows for the user to specify the maximum number of variables in a model, which can be useful in cases where there are many predictors. The output is a data frame containing all the possible models, which can be passed to the fit_models function for fitting using a PERMANOVA approach.
Arguments
- vars
A character vector of variables to use for modeling
- ncores
An integer specifying the number of cores to use for parallel processing
- k
maximum number of variables in a model, default is NULL
- verbose
logical, defaults TRUE, sends messages about processing times
References
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32-46.
Examples
# \donttest{
make_models(
vars = c("A", "B", "C", "D"),
ncores = 2, verbose = FALSE
)
#> form
#> 1 Distance ~ A
#> 2 Distance ~ B
#> 3 Distance ~ C
#> 4 Distance ~ D
#> 5 Distance ~ A + B
#> 6 Distance ~ A + C
#> 7 Distance ~ A + D
#> 8 Distance ~ B + C
#> 9 Distance ~ B + D
#> 10 Distance ~ C + D
#> 11 Distance ~ A + B + C
#> 12 Distance ~ A + B + D
#> 13 Distance ~ A + C + D
#> 14 Distance ~ B + C + D
#> 15 Distance ~ A + B + C + D
#> 16 Distance ~ 1
# using k as a way to limit number of variables
make_models(
vars = c("A", "B", "C", "D"),
ncores = 2, k = 2, verbose = FALSE
)
#> form
#> 1 Distance ~ A
#> 2 Distance ~ B
#> 3 Distance ~ C
#> 4 Distance ~ D
#> 5 Distance ~ A + B
#> 6 Distance ~ A + C
#> 7 Distance ~ A + D
#> 8 Distance ~ B + C
#> 9 Distance ~ B + D
#> 10 Distance ~ C + D
#> 11 Distance ~ 1
# }