17/03, 2022

Models

What is a model?

  • A model is a simplified version of reality that allows us to make inferences or predictions about a population
  • A model is an adequate summary of reality
  • A model is a simplification or approximation to reality and therefore will not reflect all of reality (Burnham and Anderson)
  • All models are wrong, some are useful (George Box)

Let’s see an example

  • ¿How much \(CO_2\) do plants capture?
Plant Type Treatment conc uptake
Qn1 Quebec nonchilled 95 16.0
Qn1 Quebec nonchilled 175 30.4
Qn1 Quebec nonchilled 250 34.8
Qn1 Quebec nonchilled 350 37.2
Qn1 Quebec nonchilled 500 35.3
Qn1 Quebec nonchilled 675 39.2
Qn1 Quebec nonchilled 1000 39.7
Qn2 Quebec nonchilled 95 13.6
Qn2 Quebec nonchilled 175 27.3
Qn2 Quebec nonchilled 250 37.1
Qn2 Quebec nonchilled 350 41.8
Qn2 Quebec nonchilled 500 40.6
Qn2 Quebec nonchilled 675 41.4
Qn2 Quebec nonchilled 1000 44.3
Qn3 Quebec nonchilled 95 16.2
Qn3 Quebec nonchilled 175 32.4
Qn3 Quebec nonchilled 250 40.3
Qn3 Quebec nonchilled 350 42.1
Qn3 Quebec nonchilled 500 42.9
Qn3 Quebec nonchilled 675 43.9
Qn3 Quebec nonchilled 1000 45.5
Qc1 Quebec chilled 95 14.2
Qc1 Quebec chilled 175 24.1
Qc1 Quebec chilled 250 30.3
Qc1 Quebec chilled 350 34.6
Qc1 Quebec chilled 500 32.5
Qc1 Quebec chilled 675 35.4
Qc1 Quebec chilled 1000 38.7
Qc2 Quebec chilled 95 9.3
Qc2 Quebec chilled 175 27.3
Qc2 Quebec chilled 250 35.0
Qc2 Quebec chilled 350 38.8
Qc2 Quebec chilled 500 38.6
Qc2 Quebec chilled 675 37.5
Qc2 Quebec chilled 1000 42.4
Qc3 Quebec chilled 95 15.1
Qc3 Quebec chilled 175 21.0
Qc3 Quebec chilled 250 38.1
Qc3 Quebec chilled 350 34.0
Qc3 Quebec chilled 500 38.9
Qc3 Quebec chilled 675 39.6
Qc3 Quebec chilled 1000 41.4
Mn1 Mississippi nonchilled 95 10.6
Mn1 Mississippi nonchilled 175 19.2
Mn1 Mississippi nonchilled 250 26.2
Mn1 Mississippi nonchilled 350 30.0
Mn1 Mississippi nonchilled 500 30.9
Mn1 Mississippi nonchilled 675 32.4
Mn1 Mississippi nonchilled 1000 35.5
Mn2 Mississippi nonchilled 95 12.0
Mn2 Mississippi nonchilled 175 22.0
Mn2 Mississippi nonchilled 250 30.6
Mn2 Mississippi nonchilled 350 31.8
Mn2 Mississippi nonchilled 500 32.4
Mn2 Mississippi nonchilled 675 31.1
Mn2 Mississippi nonchilled 1000 31.5
Mn3 Mississippi nonchilled 95 11.3
Mn3 Mississippi nonchilled 175 19.4
Mn3 Mississippi nonchilled 250 25.8
Mn3 Mississippi nonchilled 350 27.9
Mn3 Mississippi nonchilled 500 28.5
Mn3 Mississippi nonchilled 675 28.1
Mn3 Mississippi nonchilled 1000 27.8
Mc1 Mississippi chilled 95 10.5
Mc1 Mississippi chilled 175 14.9
Mc1 Mississippi chilled 250 18.1
Mc1 Mississippi chilled 350 18.9
Mc1 Mississippi chilled 500 19.5
Mc1 Mississippi chilled 675 22.2
Mc1 Mississippi chilled 1000 21.9
Mc2 Mississippi chilled 95 7.7
Mc2 Mississippi chilled 175 11.4
Mc2 Mississippi chilled 250 12.3
Mc2 Mississippi chilled 350 13.0
Mc2 Mississippi chilled 500 12.5
Mc2 Mississippi chilled 675 13.7
Mc2 Mississippi chilled 1000 14.4
Mc3 Mississippi chilled 95 10.6
Mc3 Mississippi chilled 175 18.0
Mc3 Mississippi chilled 250 17.9
Mc3 Mississippi chilled 350 17.9
Mc3 Mississippi chilled 500 17.9
Mc3 Mississippi chilled 675 18.9
Mc3 Mississippi chilled 1000 19.9

¿Is it the subspecies?

¿Is it the treatment?

¿Is it the concentration?

¿How do we determine this?

Model formulation

some_function(Y ~ X1 + X2 + ... + Xn, data = data.frame)
  • Y: Response variable (\(CO_2\) Uptake)
  • ~: Explained by
  • \(X_n\): Explainatory variable n (Subespecies, treatment, etc.)
  • data.frame: data base (CO2)
  • some_function: The model to test (our simplification of reality)

Some models in R

Modelos Funcion
t-test t.test()
ANOVA aov()
Linear model lm()
Generalized linear model glm()
Generalized aditive model gam()
non-linear model nls()
Mixed effect models lmer()
Boosted regression trees gbm()

¿Which one do we use to study the plant?

Fit1 <- lm(uptake ~ Type, data = CO2)
  • For this exercise we will start by using a simple linear model
  • Equivalent to an ANOVA

Using broom to get more out of your model (glance)

  • To see general data of the model
library(broom)
glance(Fit1)
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.35 0.34 8.79 43.52 0 1 -300.8 607.6 614.89 6341.44 82 84

Using broom to get more out of your model (tidy)

  • To see model parameters
tidy(Fit1)
term estimate std.error statistic p.value
(Intercept) 33.54286 1.356945 24.719384 0
TypeMississippi -12.65952 1.919011 -6.596901 0

Using broom to get more out of your model (augment)

  • To view model predictions and residuals
augment(Fit1)
uptake Type .fitted .resid .hat .sigma .cooksd .std.resid
16.0 Quebec 33.54286 -17.5428571 0.0238095 8.625388 0.0497139 -2.0190449
30.4 Quebec 33.54286 -3.1428571 0.0238095 8.841068 0.0015956 -0.3617181
34.8 Quebec 33.54286 1.2571429 0.0238095 8.847000 0.0002553 0.1446873
37.2 Quebec 33.54286 3.6571429 0.0238095 8.838566 0.0021605 0.4209084
35.3 Quebec 33.54286 1.7571429 0.0238095 8.845923 0.0004988 0.2022333
39.2 Quebec 33.54286 5.6571429 0.0238095 8.825228 0.0051698 0.6510927
39.7 Quebec 33.54286 6.1571429 0.0238095 8.820995 0.0061240 0.7086387
13.6 Quebec 33.54286 -19.9428571 0.0238095 8.559179 0.0642469 -2.2952661
27.3 Quebec 33.54286 -6.2428571 0.0238095 8.820233 0.0062957 -0.7185038
37.1 Quebec 33.54286 3.5571429 0.0238095 8.839082 0.0020440 0.4093992
41.8 Quebec 33.54286 8.2571429 0.0238095 8.799269 0.0110138 0.9503322
40.6 Quebec 33.54286 7.0571429 0.0238095 8.812465 0.0080452 0.8122217
41.4 Quebec 33.54286 7.8571429 0.0238095 8.803900 0.0099726 0.9042954
44.3 Quebec 33.54286 10.7571429 0.0238095 8.765042 0.0186927 1.2380626
16.2 Quebec 33.54286 -17.3428571 0.0238095 8.630502 0.0485869 -1.9960265
32.4 Quebec 33.54286 -1.1428571 0.0238095 8.847196 0.0002110 -0.1315339
40.3 Quebec 33.54286 6.7571429 0.0238095 8.815439 0.0073757 0.7776940
42.1 Quebec 33.54286 8.5571429 0.0238095 8.795643 0.0118286 0.9848599
42.9 Quebec 33.54286 9.3571429 0.0238095 8.785334 0.0141437 1.0769336
43.9 Quebec 33.54286 10.3571429 0.0238095 8.771133 0.0173284 1.1920257
45.5 Quebec 33.54286 11.9571429 0.0238095 8.745356 0.0230958 1.3761731
14.2 Quebec 33.54286 -19.3428571 0.0238095 8.576576 0.0604392 -2.2262108
24.1 Quebec 33.54286 -9.4428571 0.0238095 8.784174 0.0144040 -1.0867986
30.3 Quebec 33.54286 -3.2428571 0.0238095 8.840611 0.0016988 -0.3732274
34.6 Quebec 33.54286 1.0571429 0.0238095 8.847331 0.0001805 0.1216688
32.5 Quebec 33.54286 -1.0428571 0.0238095 8.847352 0.0001757 -0.1200247
35.4 Quebec 33.54286 1.8571429 0.0238095 8.845664 0.0005571 0.2137425
38.7 Quebec 33.54286 5.1571429 0.0238095 8.829102 0.0042963 0.5935466
9.3 Quebec 33.54286 -24.2428571 0.0238095 8.417641 0.0949391 -2.7901623
27.3 Quebec 33.54286 -6.2428571 0.0238095 8.820233 0.0062957 -0.7185038
35.0 Quebec 33.54286 1.4571429 0.0238095 8.846612 0.0003430 0.1677057
38.8 Quebec 33.54286 5.2571429 0.0238095 8.828356 0.0044645 0.6050558
38.6 Quebec 33.54286 5.0571429 0.0238095 8.829833 0.0041313 0.5820374
37.5 Quebec 33.54286 3.9571429 0.0238095 8.836932 0.0025295 0.4554360
42.4 Quebec 33.54286 8.8571429 0.0238095 8.791887 0.0126726 1.0193875
15.1 Quebec 33.54286 -18.4428571 0.0238095 8.601612 0.0549457 -2.1226279
21.0 Quebec 33.54286 -12.5428571 0.0238095 8.734974 0.0254138 -1.4435842
38.1 Quebec 33.54286 4.5571429 0.0238095 8.833275 0.0033548 0.5244913
34.0 Quebec 33.54286 0.4571429 0.0238095 8.847980 0.0000338 0.0526135
38.9 Quebec 33.54286 5.3571429 0.0238095 8.827596 0.0046360 0.6165650
39.6 Quebec 33.54286 6.0571429 0.0238095 8.821870 0.0059267 0.6971295
41.4 Quebec 33.54286 7.8571429 0.0238095 8.803900 0.0099726 0.9042954
10.6 Mississippi 20.88333 -10.2833333 0.0238095 8.772231 0.0170823 -1.1835308
19.2 Mississippi 20.88333 -1.6833333 0.0238095 8.846104 0.0004577 -0.1937384
26.2 Mississippi 20.88333 5.3166667 0.0238095 8.827905 0.0045662 0.6119065
30.0 Mississippi 20.88333 9.1166667 0.0238095 8.788531 0.0134261 1.0492567
30.9 Mississippi 20.88333 10.0166667 0.0238095 8.776132 0.0162078 1.1528396
32.4 Mississippi 20.88333 11.5166667 0.0238095 8.752828 0.0214255 1.3254778
35.5 Mississippi 20.88333 14.6166667 0.0238095 8.694104 0.0345123 1.6822634
12.0 Mississippi 20.88333 -8.8833333 0.0238095 8.791552 0.0127476 -1.0224018
22.0 Mississippi 20.88333 1.1166667 0.0238095 8.847238 0.0002014 0.1285196
30.6 Mississippi 20.88333 9.7166667 0.0238095 8.780397 0.0152515 1.1183119
31.8 Mississippi 20.88333 10.9166667 0.0238095 8.762547 0.0192512 1.2564225
32.4 Mississippi 20.88333 11.5166667 0.0238095 8.752828 0.0214255 1.3254778
31.1 Mississippi 20.88333 10.2166667 0.0238095 8.773216 0.0168615 1.1758580
31.5 Mississippi 20.88333 10.6166667 0.0238095 8.767208 0.0182076 1.2218949
11.3 Mississippi 20.88333 -9.5833333 0.0238095 8.782250 0.0148358 -1.1029663
19.4 Mississippi 20.88333 -1.4833333 0.0238095 8.846557 0.0003554 -0.1707200
25.8 Mississippi 20.88333 4.9166667 0.0238095 8.830837 0.0039050 0.5658697
27.9 Mississippi 20.88333 7.0166667 0.0238095 8.812874 0.0079531 0.8075632
28.5 Mississippi 20.88333 7.6166667 0.0238095 8.806572 0.0093715 0.8766185
28.1 Mississippi 20.88333 7.2166667 0.0238095 8.810831 0.0084130 0.8305816
27.8 Mississippi 20.88333 6.9166667 0.0238095 8.813874 0.0077281 0.7960540
10.5 Mississippi 20.88333 -10.3833333 0.0238095 8.770741 0.0174161 -1.1950400
14.9 Mississippi 20.88333 -5.9833333 0.0238095 8.822508 0.0057831 -0.6886346
18.1 Mississippi 20.88333 -2.7833333 0.0238095 8.842591 0.0012514 -0.3203398
18.9 Mississippi 20.88333 -1.9833333 0.0238095 8.845318 0.0006354 -0.2282661
19.5 Mississippi 20.88333 -1.3833333 0.0238095 8.846762 0.0003091 -0.1592108
22.2 Mississippi 20.88333 1.3166667 0.0238095 8.846891 0.0002800 0.1515380
21.9 Mississippi 20.88333 1.0166667 0.0238095 8.847391 0.0001670 0.1170103
7.7 Mississippi 20.88333 -13.1833333 0.0238095 8.723037 0.0280755 -1.5172980
11.4 Mississippi 20.88333 -9.4833333 0.0238095 8.783623 0.0145278 -1.0914571
12.3 Mississippi 20.88333 -8.5833333 0.0238095 8.795321 0.0119012 -0.9878742
13.0 Mississippi 20.88333 -7.8833333 0.0238095 8.803604 0.0100392 -0.9073097
12.5 Mississippi 20.88333 -8.3833333 0.0238095 8.797760 0.0113530 -0.9648558
13.7 Mississippi 20.88333 -7.1833333 0.0238095 8.811176 0.0083355 -0.8267452
14.4 Mississippi 20.88333 -6.4833333 0.0238095 8.818039 0.0067901 -0.7461807
10.6 Mississippi 20.88333 -10.2833333 0.0238095 8.772231 0.0170823 -1.1835308
18.0 Mississippi 20.88333 -2.8833333 0.0238095 8.842186 0.0013430 -0.3318490
17.9 Mississippi 20.88333 -2.9833333 0.0238095 8.841767 0.0014377 -0.3433582
17.9 Mississippi 20.88333 -2.9833333 0.0238095 8.841767 0.0014377 -0.3433582
17.9 Mississippi 20.88333 -2.9833333 0.0238095 8.841767 0.0014377 -0.3433582
18.9 Mississippi 20.88333 -1.9833333 0.0238095 8.845318 0.0006354 -0.2282661
19.9 Mississippi 20.88333 -0.9833333 0.0238095 8.847439 0.0001562 -0.1131739

Model Selection

  • Based on information criteria
  • We will work with AIC
  • \(K\) number of parameters
  • \(\ln{(\hat{L})}\) fit, more positive better, more negative is bad

\[AIC = 2 K - 2 \ln{(\hat{L})}\]

Candidate models

What equation do we do

Candidate models

Fit1 <- lm(uptake ~ Type, data = CO2)
Fit2 <- lm(uptake ~ Treatment, data = CO2)
Fit3 <- lm(uptake ~ conc, data = CO2)
Fit4 <- lm(uptake ~ Type + Treatment + conc, data = CO2)
Fit5 <- lm(uptake ~ Type + conc + I(log(conc)), data = CO2)
Fit6 <- lm(uptake ~ Type:Treatment + conc + I(log(conc)),
    data = CO2)

Interpreting models

Model 1

  • uptake ~ Type

\[ \operatorname{\widehat{uptake}} = 33.54 - 12.66(\operatorname{Type}_{\operatorname{Mississippi}}) \]

Model 2

  • uptake ~ Treatment

\[ \operatorname{\widehat{uptake}} = 30.64 - 6.86(\operatorname{Treatment}_{\operatorname{chilled}}) \]

Modelo 3

  • uptake ~ conc

\[ \operatorname{\widehat{uptake}} = 19.5 + 0.02(\operatorname{conc}) \]

Modelo 4

  • uptake ~ Type + Treatment + conc

\[ \begin{aligned} \operatorname{\widehat{uptake}} &= 29.26 - 12.66(\operatorname{Type}_{\operatorname{Mississippi}})\ - \\ &\quad 6.86(\operatorname{Treatment}_{\operatorname{chilled}}) + 0.02(\operatorname{conc}) \end{aligned} \]

Modelo 5

  • uptake ~ Type + conc + I(log(conc))

\[ \operatorname{\widehat{uptake}} = -59.04 - 12.66(\operatorname{Type}_{\operatorname{Mississippi}}) - 0.03(\operatorname{conc}) + 17.79(\operatorname{\log(conc)}) \]

Model 6

  • uptake ~ Type:Treatment + conc + I(log(conc))

\[ \begin{aligned} \operatorname{\widehat{uptake}} &= -76.77 - 0.03(\operatorname{conc}) + 17.79(\operatorname{\log(conc)})\ + \\ &\quad 19.52() + 10.14() + 15.94()\ + \\ &\quad NA() \end{aligned} \]

Seleccion de modelos

Selección de modelos con broom

Model1 <- glance(Fit1) %>%
    dplyr::select(r.squared, AIC) %>%
    mutate(Model = "Fit1")
Model2 <- glance(Fit2) %>%
    dplyr::select(r.squared, AIC) %>%
    mutate(Model = "Fit2")
Model3 <- glance(Fit3) %>%
    dplyr::select(r.squared, AIC) %>%
    mutate(Model = "Fit3")
Model4 <- glance(Fit4) %>%
    dplyr::select(r.squared, AIC) %>%
    mutate(Model = "Fit4")
Model5 <- glance(Fit5) %>%
    dplyr::select(r.squared, AIC) %>%
    mutate(Model = "Fit5")
Model6 <- glance(Fit6) %>%
    dplyr::select(r.squared, AIC) %>%
    mutate(Model = "Fit6")
Models <- bind_rows(Model1, Model2, Model3, Model4,
    Model5, Model6) %>%
    arrange(AIC) %>%
    mutate(DeltaAIC = AIC - min(AIC))

Model selection with broom

r.squared AIC Model DeltaAIC
0.8738773 477.4415 Fit6 0.00000
0.7488287 531.3074 Fit5 53.86593
0.6839043 550.6198 Fit4 73.17834
0.3467130 607.6014 Fit1 130.15996
0.2353971 620.8180 Fit3 143.37653
0.1017943 634.3456 Fit2 156.90410

Any other ideas?

Individuals

Mixed effect models

library(lme4)

Fit7 <- lmer(uptake ~ Type:Treatment + conc + I(log(conc)) +
    (1 | Plant), CO2)
loglik aic df.residual r2.conditional r2.marginal icc rmse
-230.7054 477.4108 76 0.8867725 0.8604275 0.1887554 3.419775

What should be the shape

Year 2018

Thoughts

Hinge

Equation

y ~ I(abs(YEAR - 1)) + I((YEAR - 1)^2) + YEAR:InitialHabitat +
    YEAR:Treatment

Effect of drought (Abs value - 1)